4 minute read

> Go to Number Theory Contents

How to prove a statement

Direct Proof

Direct proof는 다음과 같은 형식 (conditional statement)에 효과적

[If $P$ then $Q$] or [$P$ implies $Q$] or [$P$ => $Q$] (called “conditional statement”)

$P$: hypothesis(가정), $Q$: conclusion(결론)
만약 $P$이면 $Q$이다 라는 형태, 이를 “conditional statement”라고 부른다.

Prove: Let m and n be integers. If both m and n are odd, then mn is odd.
m,n이 정수이고 홀수일 때, mn은 소수 라는 사실을 증명하라

  • Proof: Let “m, n be integers, and m, n are odd
    • State the Hypothesis
  • To show: “mn is odd
    • State the Conclusion

Integer (정수): $\mathbb{Z} = \lbrace 0, \pm1, \pm2, …\rbrace$ \begin{align} &p + q &\in \mathbb{Z} \text{ }(\text{for any } p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}) \nonumber\newline
&pq &\in \mathbb{Z} \text{ }(\text{for any } p \in \mathbb{Z} \text{ and } q \in \mathbb{Z}) \nonumber \end{align}

\begin{align} \textbf{Given } m, n \in \mathbb{Z}, \nonumber\newline m &= 2k+1 &\text{ for some } k &\in \mathbb{Z} \nonumber\newline
n &= 2l+1 &\text{ for some } l &\in \mathbb{Z} \nonumber\newline
\end{align}

for some인 이유: 조건이 붙었기 때문에 Any를 사용하면 안된다.

\begin{align} \textbf{Will show }mn = 2r+1 \text{ for some } r \in \mathbb{Z} \nonumber \end{align}

\begin{align} mn &= (2k+1)(2l+1) \nonumber\newline &= 4kl+2k+2l+1 \nonumber\newline &= 2(2kl+k+l)+1 \nonumber\newline \end{align}

\begin{align} \textbf{Since }k, l \in \mathbb{Z}, r = 2kl+k+l \text{ is in } \mathbb{Z} \nonumber\newline \textbf{Hence, mn is odd.} \nonumber\newline \text{Q. E. D.}\nonumber \end{align}

Q.E.D.
Latin Quod Erat Demonstrandum
“What was to be demonstrated”
“Thus it was demonstrated”
증명이 끝났다.

Direct Proof: Proof by definition
정의를 충족시킨 후 보여줌으로써 증명

Example

Prove: For every integer $n$, the integer $n^2+n$ is even.

Every integer $n$ -> Conditional Statement (If $n$ is integer, $n^2+n$ is even)

Hypothesis: if $n$ is integer (every integer $n$)
Conclusion: $n^2+n$ is even (= $2k$)

Given: $n \in \mathbb{Z}$
Will show: $n^2+n=2k$ for some $k \in \mathbb{Z}$

We needed Cases:

  • If $n$ is $2m$ for some $m \in \mathbb{Z}$
    then $n^2+n = (2m)^2+(2m) = 2(2m^2+m) \in \mathbb{Z}$
  • If $n$ is $2m+1$ for some $m \in \mathbb{Z}$
    then $n^2+n = (2m+1)^2+(2m+1) = 2(2m^2+3m+1) \in \mathbb{Z}$

Q. E. D.

Direct Proof Summary

Direct ProofConditional Statement에 주로 사용된다.
Conditional Statement는 “만약 P일때 Q이다”의 형태로 나타내는 상태이다.
정의(definition)에 충족하는 식을 세우고, 계산을 통해 옳다는 것을 증명한다.
식을 세울때는 Cases로 나눠서 증명한다.


Indirect Proof

Indirect Proof는 Not conditional statement에 효과적이다.

Direct Proof: 정의
Indirect Proof: 성질

Prove: There is no smallest positive rational number.
rational number: 유리수

Proof: Suppose not. -> The smallest positive rational number is exist.

Let $q$ be the smallest positive rational number.
(for some $m, n \in \mathbb{Z}$)
So $q > 0$ and $q = \frac{m}{n}, n \neq 0$

$\frac{q}{2} = \frac{m}{2n}$ is such that $\frac{q}{2} > 0$ and $\frac{q}{2}$ is rational number ($m, 2n \in \mathbb{Z}, 2n \neq 0$)
and $\frac{q}{2} > 0$
This contradicts the assumtion that $q$ is the smallest positive rational number
Hence, there is no smallest positive rational number
Q. E. D.

Example

Prove: Let m and n be integers. Prove that if mn is odd, that both m and n are odd.

Proof by Contradiction, Assume $\mathbb{P}$, Suppose ~$\mathbb{Q}$

Given(Hyphothesis): $m, n \in \mathbb{Z}$, and $mn = 2k+1$ (for some $k \in \mathbb{Z}$)
Suppose(Not Conclusion): either $m$ or $n$ is even.

WLOG (without Loss Of Generality, 일반성을 잃지 않고, 문자를 바꿔도 문제가 되지 않을 때 사용), let m be the even integer.
So, $m=2l$ for some $l \in \mathbb{Z}$
\begin{align} \text{Then } mn &= (2l)n \nonumber\newline &= 2(ln) \quad (ln \in \mathbb{Z}) \nonumber \end{align}

$\therefore mn$ is even.
This Contradicts our assumption that mn is odd.
Q. E. D.

Indirect proof Proving the contrapositive

Not P then Not Q

Let $x$ be a positive real number. Prove that if x is irrational, then is $\sqrt{x}$ irrational
$x$를 양의 실수라고 가정. $x$가 유리수가 아닐 때, $\sqrt{x}$는 유리수가 아니다.
Proof: Will show ~Q => ~P

Grand Assumsion: $x$ be a positive real number (대전제는 건들지 않는다.)
$\mathbb{P}$: $x$ is irrational
$\mathbb{Q}$: $\sqrt{x}$ is irrational
== Direct Proof.

Given: $x > 0, x \in \mathbb{Z}$
$\quad\quad$ and $\sqrt{x} = \frac{m}{n}, $ for some $m, n \in \mathbb{Z}, n \neq 0$
Will show: $x$ is rational

Since $x > 0, \sqrt{x^2} = x = \frac{m^2}{n^2}$, and $m^2, n^2 \in \mathbb{Z}, n^2 \neq 0$

Q. E. D

Example

Suppose the points ($x_1, y_1$) and ($x_2, y_2$) each satisfy the equation $y = mx + b$
Prove that if $y_1 \neq y_2$, then $x_1 \neq x_2$

  1. This is conditonal statement
  2. Proof by contrapositive: uses $\mathbb{P}\Rightarrow\mathbb{Q}$ is equivalent to $\sim\mathbb{Q}\Rightarrow\sim\mathbb{P}$
  3. Leave grand assume as it is
    but assume $x_1=x_2=\sim\mathbb{Q}$
    and show $y_1=y_2=\sim\mathbb{P}$
  4. Difference between “Contradiction” and “Contrapositive”
    Contradiction: Leave $\mathbb{P}$ and Suppose $\sim\mathbb{Q}$ (direct proof)
    Contraposivite: Prove another new conditional statement $\sim\mathbb{Q}\Rightarrow\sim\mathbb{P}$ (indirect proof)

($x_1, y_1$) and ($x_2, y_2$) both satisfy
$y_1 = mx_1+b$ and
$y_2 = mx_2+b$
Assume $x_1 = x_2$ \begin{align} mx_1 &= mx_2 \nonumber\newline mx_1+b &= mx_2+b \nonumber \end{align}
So, $y_1=y_2$
Q. E. D.

Practice Problem

Consider the following statement:
For an integer $n$, if $n^2$ is even, then $n$ is even.
(a) Explain why the indirect proof would work better to prove this statement.
Grand assume: $n \in \mathbb{Z}$
$\mathbb{P}$: $n^2$ is even
$\mathbb{Q}$: $n$ is even $\mathbb{P} \Rightarrow \mathbb{Q}$를 증명하려면 복잡한 수식이 필요. $n^2$을 n으로 만들었을 때 짝수가 되는것을 증명하는 것 보다 $n$이 홀수일 때 $n^2$가 홀수라는 것을 증명하는 것이 쉽다.

(b) Prove the statement by contradiction.
Let $n^2=2k$, find $n = 2m-1$
$n^2 = n \times n = (2m-1) \time (2m-1) = 4m^2-4m+1 = 2(2m^2-2m)+1$
so if n is even, then n^2 is even.

(c) Prove the statement by contrapositive. Let $n = 2m-1$, prove $n^2=2k-1$
$n^2 = n \times n = (2m-1) \times (2m-1) = 4m^2-4m+1 = 2(2m^2-2m+1)-1$